Hydroxyethyl Cellulose

Hydroxyethyl Cellulose Basic information
Thickeners and binders Chemical properties Uses Production methods
Product Name:Hydroxyethyl Cellulose
Synonyms:ah15;aw15(polysaccharide);aw15[polysaccharide];bl15;Natrosol L 250;hydrdoxyethyl cellulose;2-HYDROXYETHYL CELLULOSE, AVERAGE MV CA. 90,000;2-HYDROXYETHYL CELLULOSE, AVERAGE MV CA. 1,300,000
CAS:9004-62-0
MF:C29H52O21
MW:0
EINECS:618-387-5
Product Categories:Cellulose;pharmaceutical,food,Construction;Carbohydrates;Carbohydrates A to;Carbohydrates H-LBiochemicals and Reagents;Polysaccharide;Cnbio;Materials Science;Natural Polymers;Polymer Science;Polymers;Natural Polymers;Polymer Science;cosmetic;Disinfectants;bc0001;9004-62-0;HEC
Mol File:Mol File
Hydroxyethyl Cellulose Structure
Hydroxyethyl Cellulose Chemical Properties
Melting point 288-290 °C (dec.)
density 0.75 g/mL at 25 °C(lit.)
storage temp. 2-8°C
solubility H2O: ≤5 wt. % at 20 °C
form powder
color Light brown powder
OdorOdorless
PHpH(20g/l,25℃) : 5.0~8.0
Water Solubility almost transparency
Merck 14,4673
Stability:Stable. Incompatible with strong oxidizing agents, acid chlorides, acid anhydrides
InChIKeyCWSZBVAUYPTXTG-UHFFFAOYSA-N
SMILESO1C(CO)C(OC2C(O)C(O)C(OC3C(OCCO)C(O)C(OC)C(CO)O3)C(COC3C(O)C(O)C(OC)C(CO)O3)O2)C(O)C(O)C1C
CAS DataBase Reference9004-62-0(CAS DataBase Reference)
EPA Substance Registry System2-Hydroxyethyl cellulose (9004-62-0)
Safety Information
Hazard Codes T
Risk Statements 23/24/25-36/37/38
Safety Statements 26-36-45-24/25-22
WGK Germany 3
RTECS FJ5958000
3
Autoignition Temperature725 °F
HS Code 39123980
Hazardous Substances Data9004-62-0(Hazardous Substances Data)
ToxicityLDLo intravenous in women: 5100mg/kg/6D-
MSDS Information
ProviderLanguage
Hydroxyethyl cellulose etherEnglish
SigmaAldrichEnglish
Hydroxyethyl Cellulose Usage And Synthesis
Thickeners and bindersHydroxyethyl cellulose is a commonly used cellulose ethers organic water-based ink thickening agent, belongs to a water-soluble non-ionic compound, with good water thickening ability, degraded by oxygen, acid and enzyme, under alkaline conditions can be crosslinked by Cu2 +. Has thermal stability, when heated, does not appear gelation, does not occur precipitation under acidic conditions, the film-forming property is good, the aqueous solution can be made of a transparent film, can be derived from the reaction of alkali cellulose with ethylene oxide, having properties such as thickening, emulsifying, adhesive, suspension, film-forming, maintaining moisture and protectiving colloid. The role of thickener in the aqueous ink is thickened. The viscosity of the ink added a thickening agent increases, can improve the physical and chemical stability of the ink; due to the increased viscosity, rheology of the ink can be controlled at the time of printing; the pigment and filler in ink is not easy to precipitate, increasing the storage stability of the water-based ink.
Thickening agent is a cellulose-based material and (or) polyvinyl alcohol substances. Cellulose substances may be methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, Hydroxyethyl cellulose and hydroxypropylmethyl cellulose; polyvinyl alcohol material may be an or several species of polyethylene 400, 600, 800, 1000, 1600, 2000, 4000, 6000.
The above information is edited by the chemicalbook of Liu Yujie.
Chemical propertiesThis product is white to yellowish fibrous or powdery solid, non-toxic, tasteless and soluble in water. Insoluble in common organic solvents. Having properties such as thickening, suspending, adhesive, emulsifying, dispersing, water holding. Different viscosity range of solution can be prepared. Having exceptionally good salt solubility to electrolyte.
Uses1. This product is used for cracking method to extract polymerized dispersing agents such as oil water base gel fracturing fluid, polystyrene and polyvinyl chloride. Also for latex thickening agent in paint industry, hygristor in electronics industry, cement anti-coagulant agent and water retention agent in construction industry. Glazing in ceramic industry and toothpaste binder. Also widely used in many aspects such as printing and dyeing, textile, paper, pharmaceutical, health, food, cigarettes, pesticides and fire extinguishing agent.
2. Used as a water-based drilling fluids, and thickening agent and filtrate reducer of completion fluids, thickening agent has obvious effect on brine drilling fluid. Also can be used for filtrate reducer of oil well cement. Cross-linking with the polyvalent metal ions into a gel. 3. As surfactants, protective colloids, emulsion stabilizers in combination with emulsion such as vinyl chloride, vinyl acetate emulsion, and a tackifier, dispersant, dispersion stabilizer of emulsion. Widely used in many aspects such as coatings, fibers, dyeing, paper, cosmetics, pharmaceuticals, pesticides. There are many uses in oil exploitation and machinery industry.
4. As surfactants, latex thickening agent, protective colloid, oil exploitation fracturing fluid and polystyrene and polyvinyl chloride dispersing agents, etc.
Production methods1. Alkali cellulose is a natural polymer, each of a fiber-based ring contains three hydroxyl groups, the most active hydroxyl reaction to give Hydroxyethyl cellulose. The raw material cotton linter or refined pulp meal were immersed in 30% liquid caustic soda, took out to squeeze after half an hour. Squeezed water containing soda to 1: 2.8, pulverized. Pulverized alkali cellulose was added into the reaction kettle, sealed, vacuumized, nitrogen charge, repeated to vacuumize and nitrogen charge to replace atmosphere in the reaction kettle. Precooled the liquid ethylene oxide was pressed into, cooling water was pumped in jacket of reaction kettle, controlled at about 25 ℃ and reacted for 2 h, crude product of Hydroxyethyl cellulose was obtained. The crude product was washed with alcohol, added acetic acid to adjust pH value to 4-6, added glyoxal to crosslink and aging. Then washed with water, centrifugal dewatering, dryed, milled to obtain Hydroxyethyl cellulose. Raw material consumption (kg/t) linter or low pulp meal 730-780 liquid caustic soda (30%) 2400 ethylene oxide 900 alcohol (95%) 4500 acetic acid 240 Glyoxal (40%) 100-300.
2. The raw material cotton linter or refined pulp meal were immersed in 30% liquid caustic soda, after half an hour took out to squeeze. Squeezed water containing soda to 1: 2.8, pulverized alkali cellulose was added into the reaction kettle, sealed and vacuumized, nitrogen charge, used nitrogen to replace all atmosphere in the reaction kettle,Precooled the liquid ethylene oxide was pressed into. In the cooling, controlled at 25 ℃ and reacted for 2 h, to give the crude product of crude Hydroxyethyl cellulose. The crude product was washed with ethanol and acetic acid was added to adjust the pH value to 4-6. added glyoxal to crosslink and aging, washed with water fast, finally centrifugal dehydration, dried, milled, obtained low salt Hydroxyethyl cellulose.
DescriptionHetastarch, another nonproteinaceous colloid, is a complex mixture of ethoxylated amylopectins ranging in molecular weight from 10 to 1,000 kDa (average molecular weight, ~450 kDa). When infused as a 6% solution, hetastarch approximates the activity of human albumin. The larger molecular weights, however, increase its intravascular residence time as well as its plasma expansion effects relative to albumin.
Hetastarch is synthetically produced, so it is degraded more slowly and is less antigenic than other colloids. Despite these advantages, hetastarch is quite expensive and also has no oxygen-carrying capacity.
Chemical Propertieslight yellow powder
Chemical PropertiesHydroxyethyl cellulose occurs as a white, yellowish-white or grayish-white, odorless and tasteless, hygroscopic powder.
CharacteristicsHydroxyethyl cellulose is soluble in hot or cold water, and does not precipitate at high temperature or boiling, so it has a wide range of solubility and viscosity characteristics, as well as non-thermal gelling properties. Hydroxyethyl cellulose is a non-ionic polymer material , can coexist with a wide range of other water-soluble polymers, surfactants, and salts, and is an excellent colloidal thickener for high-concentration dielectric solutions. The water retention capacity of hydroxyethyl cellulose is twice that of methyl cellulose, and it has better flow regulation; the dispersing ability of hydroxyethyl cellulose is comparable to that of methyl cellulose and hydroxypropyl methyl cellulose The specific dispersing ability is the worst, but the protective colloid ability is the strongest.
Usesdisintegrant, binder for tabletting
Useshydroxyethyl cellulose is a thickener, protective colloid, binder, stabilizer, and suspending agent. It is obtained from wood pulp Copyright 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial Review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. or chemical cotton by treatment with an alkali.
UsesThickener, protective colloid, binder, stabilizer and suspending agent.
DefinitionA starch derivative containing 90% amylopectin.
PreparationHydroxyethylcellulose is prepared from alkali cellulose and ethylene oxide. It may be noted that the hydroxyethyl group itself can react with ethylene oxide so that side-chains of varying length may be present in the product. Commercial materials generally contain between 1.4 and 2.0 ethylene oxide residues per glucose residue and have a degree of substitution of about 0.8-1.0.
Production MethodsA purified form of cellulose is reacted with sodium hydroxide to produce a swollen alkali cellulose, which is chemically more reactive than untreated cellulose. The alkali cellulose is then reacted with ethylene oxide to produce a series of hydroxyethyl cellulose ethers.
The manner in which ethylene oxide is added to cellulose can be described by two terms, the degree of substitution (DS) and the molar substitution (MS). The DS designates the average number of hydroxyl positions on the anhydroglucose unit that have been reacted with ethylene oxide. Since each anhydroglucose unit of the cellulose molecule has three hydroxyl groups, the maximum value for DS is 3. MS is defined as the average number of ethylene oxide molecules that have reacted with each anhydroglucose unit. Once a hydroxyethyl group is attached to each unit, it can further react with additional groups in an end-to-end formation. This reaction can continue and there is no theoretical limit for MS.
Brand nameHespan (DuPont Merck) .
General DescriptionNon-ionic water soluble polymer. Aqueous solutions are pseudoplastic. Readily disperses without lumping.
Pharmaceutical ApplicationsHydroxyethyl cellulose is a nonionic, water-soluble polymer widely used in pharmaceutical formulations. It is primarily used as a thickening agent in ophthalmic and topical formulations, although it is also used as a binder and film-coating agent for tablets.It is present in lubricant preparations for dry eye, contact lens care, and dry mouth.
The concentration of hydroxyethyl cellulose used in a formulation is dependent upon the solvent and the molecular weight of the grade.
Hydroxyethyl cellulose is also widely used in cosmetics.
ToxicologyConsidered to be non toxic. Use as a food additive indicates good tolerance of small amounts, but excessive amounts or overuse may bring irritant and /or harmful effects. Polysaccharides are not substantially absorbed from the gastrointestinal tract but may produce a laxative effect.
SafetyHydroxyethyl cellulose is primarily used in ophthalmic and topical pharmaceutical formulations. It is generally regarded as an essentially nontoxic and nonirritant material.
Acute and subacute oral toxicity studies in rats have shown no toxic effects attributable to hydroxyethyl cellulose consumption, the hydroxyethyl cellulose being neither absorbed nor hydrolyzed in the rat gastrointestinal tract. However, although used in oral pharmaceutical formulations, hydroxyethyl cellulose has not been approved for direct use in food products.
Glyoxal-treated hydroxyethyl cellulose is not recommended for use in oral pharmaceutical formulations or topical preparations that may be used on mucous membranes. Hydroxyethyl cellulose is also not recommended for use in parenteral products.
storageHydroxyethyl cellulose powder is a stable though hygroscopic material.
Aqueous solutions of hydroxyethyl cellulose are relatively stable at pH 2–12 with the viscosity of solutions being largely unaffected. However, solutions are less stable below pH 5 owing to hydrolysis. At high pH, oxidation may occur.
Increasing the temperature reduces the viscosity of aqueous hydroxyethyl cellulose solutions. However, on cooling, the original viscosity is restored. Solutions may be subjected to freeze–thawing, high-temperature storage, or boiling without precipitation or gelation occurring.
Hydroxyethyl cellulose is subject to enzymatic degradation, with consequent loss in viscosity of its solutions. Enzymes that catalyze this degradation are produced by many bacteria and fungi present in the environment. For prolonged storage, an antimicrobial preservative should therefore be added to aqueous solutions. Aqueous solutions of hydroxyethyl cellulose may also be sterilized by autoclaving.
Hydroxyethyl cellulose powder should be stored in a well-closed container, in a cool, dry place.
Properties and ApplicationsIndexResultsAppearanceWhite powderViscosity(mPa.s) 2% at 20℃,Brookfield 20rpm sp.5 cps15,000-25,000Particle size 80 mesh (180um) %95.0 minM.S.(Molar substitution degree) %2.0-2.5Moisture ≤6.0Water insoluble %≤0.5pH5.5-7.0Ash Content %≤5.0Bulk density g/L420-500
IncompatibilitiesHydroxyethyl cellulose is insoluble in most organic solvents. It is incompatible with zein and partially compatible with the following water-soluble compounds: casein; gelatin; methylcellulose; polyvinyl alcohol, and starch.
Hydroxyethyl cellulose can be used with a wide variety of watersoluble antimicrobial preservatives. However, sodium pentachlorophenate produces an immediate increase in viscosity when added to hydroxyethyl cellulose solutions.
Hydroxyethyl cellulose has good tolerance for dissolved electrolytes, although it may be salted out of solution when mixed with certain salt solutions. For example, the following salt solutions will precipitate a 10% w/v solution of Cellosize WP-09 and a 2% w/v solution of Cellosize WP-4400: sodium carbonate 50% and saturated solutions of aluminum sulfate; ammonium sulfate; chromic sulfate; disodium phosphate; magnesium sulfate; potassium ferrocyanide; sodium sulfate; sodium sulfite; sodium thiosulfate; and zinc sulfate.
Natrosol is soluble in most 10% salt solutions, excluding sodium carbonate and sodium sulfate, and many 50% salt solutions with the exception of the following: aluminum sulfate; ammonium sulfate; diammonium phosphate; disodium phosphate; ferric chloride; magnesium sulfate; potassium ferrocyanide; sodium metaborate; sodium nitrate; sodium sulfite; trisodium phosphate; and zinc sulfate. Natrosol 150 is generally more tolerant of dissolved salts than is Natrosol 250.
Hydroxyethyl cellulose is also incompatible with certain fluorescent dyes or optical brighteners, and certain quaternary disinfectants which will increase the viscosity of aqueous solutions.
Regulatory StatusIncluded in the FDA Inactive Ingredients Database (ophthalmic preparations; oral syrups and tablets; otic and topical preparations). Included in nonparenteral medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.
Hydroxyethyl cellulose is not currently approved for use in food products in Europe or the USA, although it is permitted for use in indirect applications such as packaging. This restriction is due to the high levels of ethylene glycol residues that are formed during the manufacturing process.
Hydroxyethyl Cellulose Preparation Products And Raw materials
Raw materialsEthanol–>Nitrogen–>Isopropyl alcohol–>ETHYLENE OXIDE–>Glyoxal–>alkali cellulose

دیدگاهی بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *